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Abstract

An exact dynamic member stiffness matrix (exact finite element), which defines the flexural motion of a
three-layered sandwich beam with unequal faceplates, is developed from the closed form solution of the
governing differential equation. This enables the powerful modelling features associated with the finite
element technique to be utilised, including the ability to account for nodal masses, spring support stiffnesses
and non-classical boundary conditions. However, such a formulation necessitates the solution of a
transcendental eigenvalue problem. This is accomplished using the Wittrick–Williams algorithm, which
enables the required natural frequencies to be converged upon to any required accuracy with the certain
knowledge that none have been missed. The accuracy of the method is confirmed by comparison with three
sets of published results and a final example indicates its range of application.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The literature dealing with the dynamics of unsymmetric, three-layered sandwich beams is
extensive, but does not include a stiffness formulation that accounts in an exact way for the
uniform distribution of mass in a member. This is surprising since such a course offers two
considerable advantages. The first of these is the opportunity to exploit the powerful modelling
features of the stiffness method of analysis. For example, continuous beams with varying member
see front matter r 2004 Elsevier Ltd. All rights reserved.
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properties are easily analysed and it is straightforward to incorporate translational and rotational
inertias of nodal masses, spring support stiffnesses and non-classical boundary conditions. The
second advantage is that the formulation is exact and results in an idealisation containing the
minimum number of elements, while leaving invariant the accuracy to which any particular
natural frequency can be calculated. This can be important for higher natural frequencies and
should be contrasted with traditional finite elements in which the accuracy is sensitive to the
idealisation. However, such a formulation is intractable and necessitates the solution of a
transcendental eigenvalue problem. The latter point is resolved herein by adopting the
Wittrick–Williams algorithm that enables any required natural frequency to be converged upon
to any required accuracy with the certain knowledge that none have been missed.
The sandwich beam considered in this paper comprises two unequal faceplates that are

separated by a weaker core layer. The following assumptions are then made: (i) transverse direct
strains in the face plates and core are negligible so that small transverse displacements are the
same for all points in a normal section; (ii) there is perfect bonding at the core/faceplate interfaces;
(iii) the face plates are elastic, isotropic and do not deform in shear; (iv) the linearly elastic core
carries only shear and the in-plane normal stresses are assumed to be negligible; (v) the transverse
flexural inertia is predominant so that the longitudinal and rotary inertias of the beam may be
ignored.
Apart from the fact that damping is not considered, these are the same basic assumptions that

were adopted by Kerwin [1], who presented the first vibrational analysis of the problem, and
which were also adopted by a number of subsequent authors [2–7]. A comparison of the equations
developed in these papers, with the exception of Refs. [6,7], has been given by Mead [8]. In
addition, more sophisticated models are available in the literature and could equally well be
developed into a stiffness formulation along the lines developed in this paper [9,10].
2. Theory

Figs. 1 and 2 show the positive sense of the forces and displacements experienced by a typical
elemental length of a member at some instant during the motion. The equations of horizontal,
vertical and moment equilibrium can then be written as

ðn1 þ n2Þ
0
¼ 0 or � n0

1 ¼ n0
2 ¼ n0; (1a,b)

q0 ¼ m€v; (2)

q ¼ ðm � m̄Þ
0; (3)

respectively, where

q ¼ q1 þ q2 þ qc; m ¼ m1 þ m2; m ¼ m1 þ m2 þ mc (4a,b,c)

and m̄ is the couple due to the axial forces n1 and n2 that are developed in faceplate 1 (upper)
and faceplate 2 (lower), respectively, during bending. As a result of Eq. (1), m̄ may be
written as

m̄ ¼ n1d ¼ �nd: (5)
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Fig. 1. Positive forces acting on a typical elemental length of a sandwich beam of width b; (a) component member

forces and inter member stresses, (b) resultant forces and layer dimensions.
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The generic quantities m, q and m relate to bending moment, shear force and mass/unit length,
respectively. When they are un-subscripted, they are resultant or total values and when
subscripted with 1, 2, or c they relate to faceplate 1, faceplate 2 and the core, respectively. The
prime and dot notations refer to partial differentiation with respect to x and time in the usual way.
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Fig. 2. Coordinate system and positive displacement configuration of a typical section of a sandwich beam of width b.
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The necessary force displacement relationships for axial extension and bending of the
faceplates are

ni ¼ EiAiu
0
i and mi ¼ �EiI ic

0
i ¼ �EiI iv

00 ði ¼ 1; 2Þ; (6a,b)

respectively, where EiAi and EiI i are the axial and flexural rigidities of face plate i, and c is the
slope of the beam’s neutral axis.
The core shear stress/strain relationship is easily shown to be

t=G ¼ dðv0 þ fÞ=dc ¼ g where f ¼ ðu2 � u1Þ=d; (7a,b)

where t; g; dc and G are the shear stress, shear strain, depth and shear modulus related to the core
material, respectively, d is the distance between centre lines of the face plates and j is the average
rotation of the beam’s cross-section. In addition, stress compatibility at the core face/plate
interface requires

n0
i ¼ ð�1Þin0 ¼ ð�1Þitb ði ¼ 1; 2Þ; (8)

where b is the breadth of the section. Eqs. (1)–(8) define the motion of the element.
Attention is now confined to harmonic motion in which the time-dependent terms are related to

o; the circular frequency, by

f ðx; tÞ ¼ F ðxÞeiot (9)
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and the upper case characters refer to the amplitude of the equivalent time-dependent quantity.
The required equation of motion can then be developed as follows.
From Eqs. (6a), (1b) and (7b) we have

U 0
2 � U 0

1 ¼ N2=E2A2 � N1=E1A1 ¼ Nð1
�

E2A2 þ 1=E1A1Þ (10)

or

N ¼ BdF0 where B ¼ E1A1E2A2=ðE1A1 þ E2A2Þ: (11a,b)

The first differential of N can also be obtained from Eqs. (7) and (8) as

N 0 ¼
Gdb

dc

ðV 0 þ FÞ: (12)

Thus, differentiating Eq. (11a) and equating to Eq. (12) yields

F00 ¼
Gb

Bdc

ðV 0 þ FÞ: (13)

Substituting Eqs. (4)–(6) and (12) into (3) gives

Qk ¼
Gd2bk

dc

ðV 0 þ FÞ � V 000

� �
; where k ¼ 1=ðE1I1 þ E2I2Þ: (14a,b)

Substituting Eq. (14) into (2) gives

V 0000 �
Gd2bk

dc

ðV 00 þ F0Þ � mo2kV ¼ 0: (15)

Eq. (15) gives F0 and hence F000: Thus, differentiating Eq. (13) and substituting for F0 and F000

yields the required equation of motion as

V 000000 �
Gb

Bdc

ð1þ kBd2
ÞV 0000 � mo2k V 00 �

Gb

Bdc

V

� �
¼ 0: (16)

Finally, we change to the non-dimensional parameter x so that Eq. (16) can be
rewritten as

½D6 � að1þ bÞD4 � lðD2 � aÞ�V ¼ 0; (17)

where

a ¼ GbL2=Bdc; b ¼ kBd2; l ¼ mo2kL4; x ¼ x=L; (18)

D is the operator d=dx and L is the member length.
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The remaining quantities necessary to formulate the required stiffness relationship are readily
obtained as follows:

Eq: ð6bÞ : LC ¼ DV ; (19)

Eqs: ð13 and 15Þ : a2bLF ¼ ½D5 � abD3 � ða2bþ lÞD�V ; (20)

Eqs: ð13� 15Þ : akL3Q ¼ ½D5 � að1þ bÞD3 � lD�V ; (21)

Eqs: ð4bÞ and ð6bÞ : kL2M ¼ �D2V ; (22)

Eqs: ð5Þ; ð11aÞ and ð15Þ : akL2M̄ ¼ �½D4 � abD2 � l�V : (23)

Eq. (17) is a linear differential equation with constant coefficients and its solution can be sought
in the following form:

V ¼
X6
j¼1

HijCjzj; where zj ¼ eZjx (24a,b)

the Cj are arbitrary constants and Zj are the roots of the characteristic equation stemming from
Eq. (17). Thus the Zj can be determined as the roots of

Z6 � að1þ bÞZ4 � lðZ2 � aÞ ¼ 0: (25)

The Zj define V ; which may be substituted into Eqs. (19)–(23) to yield the following results:

V ¼
P6
j¼1

H1jCjzj; Q ¼
P6
j¼1

H4jCjzj;

C ¼
P6
j¼1

H2jCjzj; M ¼
P6
j¼1

H5jCjzj;

F ¼
P6
j¼1

H3jCjzj; M̄ ¼
P6
j¼1

H6jCjzj:

(26)

Noting that one of the Hij is arbitrary, it is convenient to set H1j ¼ 1; which yields the following
relationships between the Hij of Eqs. (26)

H1j ¼ 1; H4j ¼ H2jðH5j � H6jÞ;

H2j ¼ Zj=L; H5j ¼ �H2
2j=k;

H3j ¼ �H2jð1þ H6jkL2=abÞ; H6j ¼ �ðZ4j � abZ2j � lÞ=akL2:

(27)

The nodal forces and displacements in the local coordinate system shown in Fig. 3(a) are now
transformed to the member coordinate system of Fig. 3(b). This is equivalent to imposing the
conditions of Eq. (28) onto Eqs. (19)–(23):

At x ¼ 0 : V ¼ V1; C ¼ C1; F ¼ �F1; Q ¼ �Q1; M ¼ M1; M̄ ¼ �M̄1;

At x ¼ 1 : V ¼ V2; C ¼ C2; F ¼ �F2; Q ¼ Q2; M ¼ �M2; M̄ ¼ M̄2:
(28)

The resulting matrix equations are given by

d ¼ SC and p ¼ S	C; (29a,b)
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Fig. 3. Nodal forces and displacements (a) in local coordinates, (b) in member coordinates.
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where

d ¼

V1

C1

F1

V2

C2

F2

2
666666664

3
777777775
; p ¼

Q1

M1

M̄1

Q2

M2

M̄2

2
666666664

3
777777775
; C ¼

C1

C2

C3

C4

C5

C6

2
666666664

3
777777775

(30)
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and

s1j ¼ H1j; s2j ¼ H2j; s3j ¼ �H3j;

s4j ¼ H1jwj; s5j ¼ H2jwj; s6j ¼ �H3jwj;

s	1j ¼ �H4j; s	2j ¼ H5j; s	3j ¼ �H6j; ðj ¼ 1; 2; . . . ; 6Þ;

s	4j ¼ H4jwj; s	5j ¼ �H5jwj; s	6j ¼ H6jwj

wj ¼ eZj;

(31)

where sij and s	ij are the elements of S and S
	; respectively, and their subscripts correspond to row

and column coordinates in the usual way. The required dynamic stiffness matrix, k; follows from
Eq. (29) through the following steps:

C ¼ S�1d therefore p ¼ kd; where k ¼ S	S�1: (32)

The dynamic stiffness matrix for the overall structure can now be assembled from the element
matrices in the usual way. The use of ‘exact’ finite elements leads to an idealisation containing the
minimum number of elements, while leaving invariant the accuracy to which any particular
natural frequency can be converged upon. This can be important for higher natural frequencies
and should be contrasted with traditional finite elements in which the accuracy is sensitive to the
idealisation. Once the required natural frequencies have been determined, the corresponding
mode shapes can be retrieved by any reliable method, such as described in Ref. [11]. The method
for converging with certainty on the required natural frequencies is now described.
3. Wittrick–Williams algorithm

The dynamic structure stiffness matrix, K; when assembled from the element matrices, yields the
required natural frequencies as solutions of the equation

KD ¼ 0; (33)

where D is the vector of amplitudes of the harmonically varying nodal displacements and K is a
function of o; the circular frequency. In most cases the required natural frequencies correspond to
jKj; the determinant of K; being equal to zero. Traditionally the required values have been
ascertained by merely tracking the value of jKj and noting the value of o corresponding to
jKj ¼ 0: However, when K is developed from exact member theory the determinant is a highly
irregular, transcendental function of o: Additionally, several natural frequencies may be close
together or coincident, while others may exceptionally correspond to D ¼ 0: Thus any trial and
error method which involves computing jKj and noting when it changes sign through zero, can
miss roots. This danger can be completely overcome by use of the Wittrick–Williams algorithm
[12], which has received wide attention [13,14]. The algorithm states that

J ¼ J0 þ sfKg; (34)

where J is the number of natural frequencies of the structure exceeded by some trial frequency,
o	; J0 is the number of natural frequencies which would still be exceeded if all the elements were
clamped at their ends so as to make D ¼ 0; and s{K} is the sign count of the matrix K: s{K} is
defined in Ref. [12] and is equal to the number of negative elements on the leading diagonal of the
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upper triangular matrix obtained from K; when o ¼ o	; by the standard form of Gauss
elimination without row interchanges.
The knowledge of J corresponding to any trial frequency makes it possible to develop a method

for converging upon any required natural frequency to any desired accuracy. However, while s{K}
is easily computed, the value of J0 is more difficult to determine and is dealt with below.
4. Determination of J0

From the definition of J0 it can be seen that

J0 ¼
X

Jm; (35)

where Jm is the number of natural frequencies of a component element, with its ends clamped,
which have been exceeded by o	; and the summation extends over all such elements. In some cases
it is possible to determine the value of Jm for the element type symbolically, using a direct
approach [11]. However, this is impractical in the present case due to the algebraic complexity of
the expressions. Instead, the same result is achieved by an argument based on Eq. (34) which was
originally put forward by Howson and Williams [15].
Consider an element, which has been isolated from the remainder of the structure by clamping

its ends. Unfortunately, this structure cannot be solved easily. We therefore seek to establish a
different set of boundary conditions that admit a simple symbolic solution and which enable
solutions to the clamped ended case to be deduced. This is often most easily achieved by imposing
simple supports which, in this case, permit rotation and relative motion of the faceplates, i.e. C
and F; respectively, but prevent lateral displacement V :
Let the stiffness matrix for this structure be kss; then the number of roots exceeded by o	 is

given by Eq. (34) and the arguments above as

Jss ¼ Jm þ sfkssg; (36)

where Jss is the number of natural frequencies that lie below the trial frequency for the element
with simple supports. It then follows directly that

Jm ¼ Jss � sfkssg: (37)

Once more kss; and hence sfkssg; is readily obtained, this time from Eq. (32). Jss is slightly more
difficult, but relates to the element with boundary conditions that yield a simple exact solution, as
shown below.
For the simply supported case, the boundary conditions are defined by

M ¼ M̄ ¼ V ¼ 0: (38)

These conditions are satisfied by assuming solutions of the form

V ¼ B sin npx ðn ¼ 1; 2; 3; . . .Þ (39)

and B is a constant. Substituting Eq. (39) and its derivatives into Eq. (17) yields the equation of
motion as

½n6p6 þ að1þ bÞn4p4 � lðn2p2 þ aÞ�B ¼ 0; (40)
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which, for non-trivial solutions yields

on ¼ n2p2f½n2p2 þ að1þ bÞ�=mkL4ðn2p2 þ aÞg1=2: (41)

Hence Jss is given by the number of positive values of on that lie below the trial frequency, o	:
Thus, substituting Eq. (37) into Eq. (35) gives

J0 ¼
X

ðJss � sfkssgÞ: (42)

The required value of J then follows from Eq. (34).
5. Numerical results

Four examples are now given to validate the theory and indicate its range of application. The
first three examples compare results obtained by a number of authors for a simply supported,
cantilevered and fixed ended beam, respectively, which have been widely used as test examples.
The final example gives only the authors’ results for a simple three span continuous beam with
various combinations of parameters and support conditions. It can also be used to demonstrate
how the conventional method of determinant tracking to find natural frequencies can miss roots.

Example 1. A simply supported sandwich beam with identical faceplates and the following
material and geometric properties is analysed. The results obtained by a number of authors are
given in Table 1.

E1 ¼ E2 ¼ 68:9GPa; G ¼ 82:68MPa; mi ¼ ribdi; where i ¼ 1; 2; c and r denotes material
density, r1¼ r2¼2680kg=m3; rc¼32:8 kg=m3; d1¼d2 ¼ 0:4572mm; dc¼12:7mm; b¼25:4mm;
L ¼ 0:9144m:
Table 1

Comparative results for the first ten natural frequencies (Hz) of the simply supported sandwich beam of Example 1

Freq. no.Present authorsRao [6] Mead [16]a Ahmed [17]Ahmed [18]Sakiyama [7]Kameswara [19]Marur [20]

Eq. (32) Table I

1 57.1358 57.1358 57.1352 56.028 55.5 57.5 56.159 57.068 57.041

2 219.585 219.585 219.575 — — — 215.82 218.569 218.361

3 465.172 465.172 465.129 457.12 451 467 457.22 460.925 460.754

4 768.177 768.177 768.058 — — — 755.05 757.642 758.692

5 1106.68 1106.68 1106.43 1090.26 1073 1111 1087.9 1086.955 1097.055

6 1465.10 1465.10 1464.65 — — — 1440.3 1433.920 1457.064

7 1833.55 1833.55 1832.82 1809.8 1779 1842 1802.7 1789.345 1849.380

8 2206.19 2206.19 2205.09 — — — 2169.8 2147.969 2275.916

9 2579.79 2579.79 2578.22 2549.5 2510 2594 2538.2 — 2562

10 2952.65 2952.65 2950.52 — — — 2906.2 — —

aColumn five contains the results that were presented by Mead in Table I of Ref. [16] and which were calculated using

Eq. (32) of the same paper. Unfortunately, Mead provided insufficient data to confirm these results. Thus Eq. (32) was

used to calculate the results presented in column four from the data used to determine the results in columns two and

three.
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Example 2. The beam of Example 1 is now constrained to act as a cantilever and its length is
reduced to 0.7112m. Results for the first eight natural frequencies are presented in Table 2.
Example 3. A fixed ended sandwich beam with the following material and geometrical properties
is now considered. The results are shown in Table 3.

E1 ¼ E2 ¼ 68:9GPa; G ¼ 68:9MPa; r1 ¼ r2 ¼ 2687:3 kg=m3; rc ¼ 119:69 kg=m3; d1 ¼ d2 ¼

0:40624mm; dc ¼ 6:3475mm; b ¼ 25:4mm; L ¼ 1:21872m:
Example 4. Attention is now given to the three span continuous sandwich beam of Fig. 4, for
which two sets of results are shown in Table 4. Type A results, in which the basic material and
geometric properties of each span are identical to the beam of Example 3 and Type B results,
which use the same data, except that the top faceplate in the middle span has the following
properties: E1 ¼ 207GPa; r1 ¼ 7850kg=m3; d1 ¼ 0:4572mm: In addition, various combinations
of nodal mass and spring support stiffness are imposed as indicated. The rotational inertia IM	

1
of

mass M	
1 is assumed to be significant and dependent upon C alone whenever it is included. In

similar fashion, K3 is applied to F alone when determining the results in the last three columns of
Table 2

Comparative results for the first eight natural frequencies (Hz) of the cantilevered sandwich beam of Example 2

Freq. no. Present authors Ahmed [17] Ahmed [18] Sakiyama [7] Marur [20]

1 33.7513 32.79 33.97 33.146 33.7

2 198.992 193.5 200.5 195.96 197.5

3 512.307 499 517 503.43 505.5

4 907.299 886 918 893.28 890.5

5 1349.65 1320 1368 1328.5 1321

6 1815.82 1779 1844 1790.7 1786

7 2292.45 2249 2331 2260.2 2271

8 2772.23 2723 2824 2738.9 2792

Table 3

Comparative results for the first ten natural frequencies (Hz) of the fixed ended sandwich beam of Example 3. It should

be noted that the results presented by Raville are experimental

Freq. no. Present authors Sakiyama [7] Raville [21]

1 34.5965 33.563 —

2 93.1000 90.364 —

3 177.155 172.07 185.5

4 282.784 274.91 280.3

5 406.325 395.42 399.4

6 544.331 530.34 535.2

7 693.787 676.85 680.7

8 852.153 832.43 867.2

9 1017.35 995.36 1020

10 1187.70 1163.9 1201
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Fig. 4. Three-span continuous sandwich beam of Example 4.

Table 4

The first ten natural frequencies (Hz) of the sandwich beam described in Example 4 for various combinations of nodal

mass and stiffness

M	
1 (kg) 0 0 10 10 0 0 0 10 10

IM	
1
(kgm2) 0 0 0 0.0125 0 0 0 0.0125 0.0125

M	
2 (kg) 0 0 0 0 10 0 0 10 10

K1 (N/m) 1010 (N) 0 0 0 0 107 0 107 107

K2 (N/m) 1010 (N) 0 0 0 0 0 0 0 0

K3 (Nm/rad) 1010 (N) 0 0 0 0 0 102 102 102

Freq. No. Type A Type B

1 19.8054 3.00131 0.99164 0.98953 0.16468 3.74279 4.68781 0.34959 0.37080

2 28.7227 7.96371 3.36863 3.36577 7.26450 19.9672 8.57050 1.73349 1.78143

3 34.5965 20.6721 11.8279 7.15669 17.6599 28.6420 21.4203 7.40576 7.4113

4 69.3442 29.6883 27.1897 12.1672 24.0689 34.5035 35.5282 20.3410 18.4876

5 84.0878 44.4183 37.1184 27.3358 43.3952 69.4838 45.6496 29.5450 28.4164

6 93.1000 70.7205 67.7937 37.5765 65.2770 84.5535 71.8501 65.8958 60.7004

7 146.067 86.6974 86.5840 68.6572 76.5809 93.5183 94.5076 79.1142 79.1600

8 165.676 109.605 106.240 86.9180 108.084 146.492 110.979 92.9833 91.5582

9 177.155 148.162 127.561 108.150 140.591 166.838 149.409 122.165 121.186

10 246.735 170.175 165.198 127.579 155.788 178.217 179.271 145.313 136.490

W.P. Howson, A. Zare / Journal of Sound and Vibration 282 (2005) 753–767764
Table 4, but applied to bothC and F when modelling the fixed end condition for the results in the
second column.
6. Discussion

The results presented in Tables 1–3 show good correlation between those of the current theory
and a selection of comparable results available in the literature. The differences in the results are
attributable to many factors that vary widely from approximate solution techniques to differences
in basic assumptions. However, a complete description of these differences is deemed to be
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beyond the scope of the current paper. Finally, Table 4 provides a range of ‘exact’ solutions,
which may be helpful for future comparisons. It can also be used in conjunction with Table 3 to
illustrate a possible pit fall that exists if the natural frequencies of a transcendental eigenvalue
problem are acquired using a determinant search technique, as follows.
Consider the structure of Fig. 4 with M	

1 ¼ M	
2 ¼ IM	

1
¼ 0; K1 ¼ K2 ¼ K3 ¼ 1 and beams

with identical material and geometric properties in each span that correspond to the beam of
Example 3. The resulting structure is a uniform beam that is continuous across the simple
supports at B and C, clamped at A and D and symmetric about its mid point. The structure could
therefore be modelled using one element per member and two nodes, namely B and C.
Since the structure is symmetric, the modes of vibration must be either symmetric or

antisymmetric about the midpoint. Considering only the symmetric modes, it is clear that they fall
into one of two categories. Either there is rotation at B and C or there is not. For the former
category and all the antisymmetric modes, the requirement for a natural frequency, described
previously by Eq. (33) as KD=0, is satisfied in the usual way by jKj ¼ 0: However, frequencies in
the latter category satisfy KD=0 by virtue of the fact that D=0 rather than the more usual
jKj ¼ 0: In fact, jKj becomes infinite at such natural frequencies, with the consequence that they
could be missed by traditional methods of determinant tracking which seek only jKj ¼ 0:
Moreover, even if an analyst were to intervene in what is likely to be an automated process, the
occurrence of jKj becoming infinite would not necessarily alert him to the danger that natural
frequencies were being missed, since it is quite common for jKj to change sign through infinity at
frequencies which do not correspond to natural frequencies of the structure. The fact that such a
condition can arise in simple, practical structures can be seen by comparing the second columns of
Tables 3 and 4. This shows that the third, sixth and ninth natural frequencies of the continuous
beam of Example 4 correspond to the first three natural frequencies of the fixed ended beam of
Example 3, i.e. the clamped ended frequencies of each span member.
The use of the stiffness method offers great flexibility to impose ‘constraints’ on any selected

node. These will typically take the form of mass inertias, spring support stiffnesses or relationships
that constrain one or more displacements to move in a predefined way relative to another set of
displacements. Imposing such constraints follows the normal rules that would apply to a
traditional beam element, except more care is required to associate the constraint with the
appropriate degree(s) of freedom. Table 5 amplifies this by listing the possible rotational
displacement constraints and how they are achieved, primarily as an aid to establishing boundary
conditions.
Table 5

Rotational displacement constraints. A(B) implies an infinitely stiff rotational spring imposed on FðCÞ

Degree of freedom Constraint Description

Ca0 Fa0 C ¼ F Riveted

Ca0 Fa0 None Free/Free

Ca0 F ¼ 0 A Free/Fixed

C ¼ 0 Fa0 B Fixed/Free

C ¼ 0 F ¼ 0 A+B Fixed/Fixed
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Finally, it is worth noting that while assembling the results it became apparent that it is
relatively easy to generate an example in which the value of a; defined in Eq. (18), is sufficiently
large to cause the roots of the characteristic equation, Eq. (25), to become sufficiently large that
the value of z in Eq. (24) overflows, even when using double precision arithmetic. However, it is
easy to show that the dominant term in the expression for a is the length of the member (element).
Thus if difficulty is experienced it is merely necessary to subdivide the member into a greater
number of elements until the problem is resolved.
7. Conclusions

A method for converging with certainty upon any required natural frequency of a single or
continuous sandwich beam has been presented. It uses exact member theory in conjunction with
the dynamic stiffness technique and this necessitates the solution of a transcendental eigenvalue
problem. Solutions are achieved by use of the Wittrick–Williams algorithm, which yields the
required natural frequencies to any desired accuracy in such a way that no difficulties are
experienced with close or coincident natural frequencies or those exceptional natural frequencies
which correspond to the nodal displacement vector being zero. The method therefore provides a
very attractive alternative to the traditional finite element technique in which the accuracy is
sensitive to the idealisation.
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